US Headquarters 2950 Red Hill Ave, Costa Mesa California, USA 92626 Office: 714.913.2200 Fax: 714.913.2202 www.vikingtechnology.com # **Datasheet for:** # **MSATA MO-300 SSD** PSFEM2xxxxWxxx Embedded/Industrial Applications ### **Legal Information** Copyright© 2018 Sanmina Corporation. All rights reserved. The information in this document is proprietary and confidential to Sanmina Corporation. No part of this document may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from Sanmina. Sanmina reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of Sanmina to provide notification of such revision or change. Sanmina provides this documentation without warranty, term or condition of any kind, either expressed or implied, including, but not limited to, expressed and implied warranties of merchantability, fitness for a particular purpose, and non-infringement. While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made. In no event will Sanmina be liable for damages arising directly or indirectly from any use of or reliance upon the information contained in this document. Sanmina may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time. Sanmina, Viking Technology, Viking Modular Solutions, and the Viking logo are trademarks of Sanmina Corporation. Other company, product or service names mentioned herein may be trademarks or service marks of their respective owners. # **Revision History** | Date | Revision | Description | Checked by | |---------|----------|--|------------| | 2/21/18 | А | Initial release from a modified PSFS22xxxxWxxx_A by changing PN's, mechanicals, pin-out and voltage. Add 960GB capacity. | | | 5/24/18 | В | Add VRFEM2200GWCZPT3 - mSATA
240GB pSLC | | | 8/29/18 | С | Unsupported Smart Attributes:
231 E7,
233 E9 | | Ordering Information for the MSATA MO-300 SSD | Part Number | SATA
Interface | Application | Useable
Capacity
(GB) ¹ | LBA ² | NAND
Type | Temperature
Range | NAND Device | |------------------|-------------------|-------------|--|------------------|--------------|----------------------|---------------| | VRFEM2030GWCDMTL | 6Gb/s | Client | 30 | 58,626,288 | MLC | (0 to +70'c) | Toshiba L-die | | VRFEM2030GWIDMTL | 6Gb/s | Client | 30 | 58,626,288 | MLC | (-40 to +85'c) | Toshiba L-die | | VRFEM2030GWCBMTL | 6Gb/s | Client | 30 | 58,626,288 | MLC | (0 to +70'c) | Toshiba L-die | | VRFEM2030GWIBMTL | 6Gb/s | Client | 30 | 58,626,288 | MLC | (-40 to +85'c) | Toshiba L-die | | VRFEM2060GWCDMTL | 6Gb/s | Client | 60 | 117,231,408 | MLC | (0 to +70'c) | Toshiba L-die | | VRFEM2060GWIDMTL | 6Gb/s | Client | 60 | 117,231,408 | MLC | (-40 to +85'c) | Toshiba L-die | | VRFEM2120GWCBMTL | 6Gb/s | Client | 120 | 234,441,648 | MLC | (0 to +70'c) | Toshiba L-die | | VRFEM2120GWIBMTL | 6Gb/s | Client | 120 | 234,441,648 | MLC | (-40 to +85'c) | Toshiba L-die | | VRFEM2240GWCAMTL | 6Gb/s | Client | 240 | 468,862,128 | MLC | (0 to +70'c) | Toshiba L-die | | VRFEM2240GWIAMTL | 6Gb/s | Client | 240 | 468,862,128 | MLC | (-40 to +85'c) | Toshiba L-die | | VRFEM2480GWCZMTL | 6Gb/s | Client | 480 | 937,703,088 | MLC | (0 to +70'c) | Toshiba L-die | | VRFEM2480GWIZMTL | 6Gb/s | Client | 480 | 937,703,088 | MLC | (-40 to +85'c) | Toshiba L-die | | VRFEM2960GWCCMTL | 6Gb/s | Client | 960 | 1,875,385,008 | MLC | (0 to +70'c) | Toshiba L-die | | VRFEM2960GWICMTL | 6Gb/s | Client | 960 | 1,875,385,008 | MLC | (-40 to +85'c) | Toshiba L-die | | VRFEM2200GWCZPT3 | 6Gb/s | Client | 240 | 468,862,128 | pSLC | (0 to +70'c) | Toshiba 3D | #### Notes: - 1. User capacity is reported as a decimal count of bytes. The capacity is determined using the industry standard method as - defined by the International Drive Equipment Manufacturers Association (IDEMA). 2. Logical Block Address (LBA) Configuration: The drive is set to report the number of logical block addresses (LBA) that will ensure sufficient storage space for the specified density. Standard LBA settings, based on the IDEMA standard (LBA1-03). - 3. Contact Viking for availability dates - 4. The lowercase letters x,y and z are wildcard characters that indicate product or customer specific information. Refer to the Viking part number coversheet or PN decoder for details. # **Table of Contents** | 1 | INTRODUCTION | 7 | |-----|---|----| | 1.1 | FEATURES | 7 | | 2 | MSATA MO-300 SSD TECHNICAL SPECIFICATIONS | 8 | | 3 | MECHANICAL DIMENSIONS | 10 | | 4 | ARCHITECTURE | 11 | | 5 | PERFORMANCE | 11 | | 6 | ENDURANCE | 12 | | 7 | ELECTRICAL CHARACTERISTICS | 12 | | 8 | DATA SECURITY | 14 | | 8.1 | Encryption | 14 | | 9 | INTERFACE | 14 | | 10 | COMMANDS | 16 | | 11 | SMART ATTRIBUTES | 19 | | 12 | COMPLIANCE | 21 | # **Table of Tables** | Table 5-1: MSATA MO-300 SSD Performance | 11 | |---|----| | Table 6-1: TLC TBW | 12 | | Table 6-2: pSLC TBW | 12 | | Table 7-1: Power Consumption | 12 | | Table 9-1: Signal Segment Pinout | 15 | | Table 10-1: Supported ATA Commands | 16 | | Table 11-1: Required S.M.A.R.T Attributes | 19 | | Table 11-2: S.M.A.R.T Attributes Not Supported | 20 | | Table 11-3: Optional Supported S.M.A.R.T Attributes | 20 | | Table of Figures | | | Figure 3-1: MO-300 mSATA SSD | 10 | | Figure 3-2: Dimension Details for MO-300 mSATA SSD | 10 | | Figure 4-1: Block Diagram | 11 | | Figure 9-1: mSATA connector | 15 | #### 1 Introduction The Viking MSATA MO-300 SSD combines performance and reliability with low power operation to make the ideal mobile drive. The high read and write performance will satisfy the most demanding power user. While the low power mode extends battery life for the road warrior. Providing an industry-leading bandwidth, the Viking MSATA MO-300 SSD can approach the limits of the SATA 6Gb/s interface on large transfers. I/O performance reaches enterprise class standards. A robust LDPC algorithm and StaticDataRefresh technology protect the data. Efficient bad block management and reduced write amplification further bolster endurance. Drive health is monitored using an SSD-specific set of S.M.A.R.T. attributes. The combination of these techniques provides data protection unrivaled in the storage industry. #### 1.1 FEATURES #### **Reduced Power Requirements** - No moving parts - Super-low operating and standby power needs - Power requirements notably reduced over a typical HD #### **Fast Performance** - Virtually zero spin up or seek times - Zero rotational latency - High sustained data transfer rate #### Reliable - No volatile memory elements - Improved resistance to shock & vibration - Predictable and manageable failure modes reduce IT costs #### **Improved Operation** - Noise and vibration free - Virtually no heat emissions # 2 MSATA MO-300 SSD Technical Specifications #### **Attributes** - Silicon Motion SM2246EN controller - DDR3 external cache - SLC caching accelerates burst performance - Direct-to-MLC mode enhances sustained write performance - Global wear leveling evens program/erase counts to extend drive lifespan - StaticDataRefresh technology ensures data integrity - Intelligent garbage collection routines for advanced free space management - TRIM command support (OS dependent) - S.M.A.R.T. support - LDPC hard and soft decode ECC - DEVSLP support - Internal flash RAID-like parity scheme for an additional layer of error correction - Field-upgradeable firmware - SATA 3.1 Compliant SATA 6Gb/s backwards compatible to SATA 3Gb/s and 1.5Gb/s - ATA/ATAPI-8-ACS3 command set compliant - Industry-standard 512 byte sector support - Native Command Queuing (NCQ) support with 32 command queue depth - RoHS-compliant package - AES 256-bit Encryption - OPAL 2.0 Support #### **Performance** Sequential Read: Up to 520MB/s Sequential Write: Up to 460MB/s Random Read: Up to 76K IOPS (4K block size) Random Write: Up to 46K IOPS (4K block size) #### **Endurance** • TBW: Up to 1044 • DWPD: 0.80 #### Security - User selectable ATA password support - Secure Erase support #### Reliability - MTBF: 1.5 million device hours (per Telcordia SR-332 reliability prediction procedure) - Low Density Parity Check (LDPC) ECC - Static and dynamic wear leveling - Uncorrectable Bit Error Rate: ≤1 sector per 10¹⁶ bits read #### Electrical/Mechanical • +3.0VDC (±5%) power supply • Power Consumption: up to 1.55W (Active), 0.82W (Idle) • Weight: 60g #### **Environmental** Operating (Commercial Temperature): 0-70°C Operating (Industrial Temperature): -40-85°C Non-Operating temperature: -40-85°C Operating humidity: 5-95% relative Shock: 1500G/0.5ms Vibration: 2-500Hz, 3.1G # 3 Mechanical Dimensions Figure 3-1: MO-300 mSATA SSD $\textbf{Notes:} \ \textbf{All dimensions are in millimeters, +/- 0.2mm, unless otherwise stated.} \ \textbf{Reference SATA connector specifications}$ Figure 3-2: Dimension Details for MO-300 mSATA SSD ### 4 Architecture The Viking MSATA MO-300 SSD employs a single chip controller with a SATA Revision 3.1 interface on the host side and up to 16 NAND flash packages internally. Figure 4-1: Block Diagram ### 5 Performance Table 5-1: MSATA MO-300 SSD Performance | Capacity (GB) | | 30 | 60 | 120 | 240 | 480 | 960 | 1920 | |------------------------------|--------|-----|-----|-----|-----|-----|-----|------| | Max Sequential Read (up to) | (MB/s) | 500 | 500 | 500 | 520 | 520 | 520 | 520 | | Max Sequential Write (up to) | (MB/s) | 420 | 420 | 420 | 460 | 470 | 470 | 470 | | Max 4K Random Read (up to) | (IOPS) | 50K | 50K | 50K | 76K | 76K | 76K | 76K | | Max 4K Random Write (up to) | (IOPS) | 44K | 44K | 44K | 46K | 46K | 46K | 46K | Notes: 1.estimated for 30Gto 120G ## 6 Endurance Table 6-1: TLC TBW | Capacity
(GB) | TBW
(TB) | DWPD
(3yr) | |------------------|-------------|---------------| | 30 | 48 | 0.8 | | 60 | 90 | 0.8 | | 120 | 181 | 0.8 | | 240 | 262 | 0.8 | | 480 | 544 | 0.8 | | 960 | 1044 | 0.8 | | 1920 | 2080 | 0.8 | Note: 1.estimated Table 6-2: pSLC TBW | Capacity
(GB) | TBW
(TB) | DWPD
(3yr) | |------------------|-------------|---------------| | 30 | TBD | TBD | | 60 | TBD | TBD | | 120 | TBD | TBD | | 240 | TBD | TBD | | 480 | TBD | TBD | | 960 | TBD | TBD | | 1920 | TBD | TBD | Note: 1.estimated ## 7 Electrical Characteristics **Table 7-1: Power Consumption** | Capacity
(GB) | ldle | 100%
Read | 100%
Write | Unit | |------------------|--------|--------------|---------------|------| | 30 | <0.820 | <.95 | <1.05 | А | | 60 | <0.820 | <.95 | <1.05 | Α | | 120 | <0.820 | <.95 | <1.05 | Α | | 240 | <0.820 | <1.05 | <1.55 | Α | | 480 | <0.820 | <1.05 | <1.55 | Α | | 960 | <0.820 | <1.05 | <1.55 | Α | MSATA MO-300 | 1920 | <0.820 | <1.05 | <1.55 | Α | |------|--------|-------|-------|---| | A1 4 | | | | | Notes - 1 Idle power consumption measured with LPM enabled on host - 2 Active power consumption measured with IOMeter 1.1x64-4KiB Aligned Random 3 estimated for 30Gto 120G # 8 Data Security ### 8.1 Encryption The SSD drive is a self-encrypting drive (SED), with a bulk data encryption feature that provides automatic hardware-based data security and enhanced secure erase capability. A self-encrypting drives, scrambles data using a data encryption key as it is written to the drive and then descrambles it with the key as it is retrieved. This gives the user the highest level of data protection available and provides a fast erase simply by deleting the encryption key, eliminating the need for time consuming data-overwrite. Data on the drive is instantly rendered unreadable. The SSD supports AES-256 encryption and ATA Secure Erase features to protect sensitive data. The SSD drives support the following security features: - AES 256 on the fly support. - RSA 512/1024/2048 - SHA 160/256/512 - TCG OPAL SSC #### 9 Interface Viking MO-300 mSATA SSD uses the industry standard PCIe mini Card connector as defined by SATA-IO. The pin-out of the connector is shown in Figure 9-1. Figure 9-1: mSATA connector **Table 9-1: Signal Segment Pinout** | Pin | Signal | Use | Pin | Signal | Use | |-----|----------|-----|-----|----------|-----| | 1 | Reserved | - | 2 | 3.3V | PWR | | 3 | Reserved | - | 4 | GND | GND | | 5 | Reserved | - | 6 | 1.5V | NC | | 7 | Reserved | - | 8 | Reserved | - | | 9 | GND | GND | 10 | Reserved | - | | 11 | Reserved | - | 12 | Reserved | - | | 13 | Reserved | - | 14 | Reserved | - | | 15 | GND | GND | 16 | Reserved | - | | 17 | Reserved | - | 18 | GND | GND | | 19 | Reserved | - | 20 | Reserved | - | | Pin | Signal | Use | Pin | Signal | Use | |-----|----------|-------------------------|-----|-------------|-----| | 21 | GND | GND | 22 | Reserved | - | | 23 | A+ | TXP | 24 | 3.3V | PWR | | 25 | A- | TXN | 26 | GND | GND | | 27 | GND | GND | 28 | 1.5V | NC | | 29 | GND | GND | 30 | SMB-
SCL | NC | | 31 | B- | RNX | 32 | SMB-
SDA | NC | | 33 | B+ | RXP | 34 | GND | GND | | 35 | GND | GND | 36 | Reserved | - | | 37 | GND | GND | 38 | Reserved | - | | 39 | 3.3V | PWR | 40 | GND | GND | | 41 | 3.3V | PWR | 42 | Reserved | - | | 43 | Select | NC
(mSATA
Select) | 44 | Reserved | - | | 45 | Vendor | RS232-
TX | 46 | Reserved | - | | 47 | Vendor | RS232-
RX | 48 | 1.5V | NC | | 49 | DAS | DAS | 50 | GND | GND | | 51 | Presence | GND | 52 | 3.3V | PWR | # 10 Commands **Table 10-1: Supported ATA Commands** | Command Name | Code | Subcode / Page | |-----------------------------|------|----------------| | General Feature Set | | | | NOP | 00h | | | Data Set Management | 06h | | | Trim | | 01h | | Recalibrate | 1Xh | | | Read Sectors | 20h | | | Read Sectors (w/o retry) | 21h | | | Read Sectors Ext | 24h | | | Read DMA Ext | 25h | | | Read Native Max Address Ext | 27h | | | Read Multiple Ext | 29h | | | Read Log Ext | 2Fh | | | Command Name | Code | Subcode / Page | |--------------------------------------|------|----------------| | Log Directory | | 00h | | Extended Comprehensive SMART | | | | Error Log | | 03h | | Device Statistics Logs | | 04h | | List of supported log pages | | 00h | | General Statistics | | 01h | | General Errors Statistics | | 04h | | Transport Statistics | | 06h | | SSD Statistics | | 07h | | Extended SMART Self-test Log | | 07h | | NCQ Error Log | | 10h | | SATA Phy Event Counters Log | | 11h | | Identify Device Data Log | | 30h | | List of Supported Pages | | 00h | | Copy of IDENTIFY DEVICE Data | | 01h | | Capacity | | 02h | | Supported Capabilities | | 03h | | Current Settings | | 04h | | ATA Strings | | 05h | | Security | | 06h | | Serial ATA | | 08h | | Write Sectors | 30h | | | Write Sectors Ext | 34h | | | Write DMA Ext | 35h | | | Set Max Address Ext | 37h | | | Write Multiple Ext | 39h | | | Write DMA FUA Ext | 3Dh | | | Write Log Ext | 3Fh | | | Selective Self-Test log(SMART) | | 09h | | Host Specific(SMART) | | 80h-9Fh | | SCT Command/Status(SCT) | | E0h | | SCT Data Transfer(SCT) | | E1h | | Read Verify Sectors | 40h | | | Read Verify Sectors (w/o retry) 41h | | | | Read Verify Sectors Ext | 42h | | | Write Uncorrectable Ext | 45h | | | Pseudo-UECC with logging | | 55h | | Read FPDMA Queued | 60h | | | Write FPDMA Queued | 61h | | | Seek | 7xh | | | Command Name | Code | Subcode / Page | |---|------|----------------| | Execute Device Diagnostic | 90h | | | Initialize Drive Parameters | 91h | | | Download Microcode | 92h | | | Download with offsets and save | | | | microcode for immediate and future | | 004 | | use. Download (without offsets) and save | | 03h | | microcode | | 07h | | Download with offsets and save | | | | microcode for future use / Activate | | | | downloaded microcode | | 0Eh/0Fh | | SMART | B0h | | | Read Data | | D0h | | Read Thresholds | | D1h | | Enable/Disable Attr Autosave | | D2h | | Save Attribute Values | | D3h | | Exec Off-line Immediate | | D4h | | Execute Off-Line routine | | | | Execute Short Self-test routine (Off- | | | | Line) Execute Extended Self-test routine | | | | (Off-Line) | | | | Abort Off-Line Self-test routine | | | | Execute Short Self-test routine | | | | (Captive) | | | | Execute Extended Self-test routine | | | | (Captive) | | | | Read Log Sector | | | | Write Log Sector | | | | Enable Operations | | | | Disable Operations | | | | Return Status | DAL | | | Sanitize Device | B4h | 006 | | Sanitize Status Ext | | 00h | | Crypto Scramble Ext | | 11h | | Block Erase Ext | | 12h | | Overwrite Ext | | 14h | | Sanitize Freeze Lock Ext | 0.41 | 20h | | Read Multiple | C4h | | | Write Multiple | C5h | | | Set Multiple Mode | C6h | | | Read DMA | C8h | | | Command Name | Code | Subcode / Page | |---------------------------|------|----------------| | Read DMA (w/o retry) | C9h | | | Write DMA | CAh | | | Write DMA (w/o retry) | CBh | | | Write Multiple FUA Ext | CEh | | | Standby Immediate | E0h | | | Idle Immediate | E1h | | | Standby | E2h | | | Idle | E3h | | | Read Buffer | E4h | | | Check Power Mode | E5h | | | Sleep | E6h | | | Flush Cache | E7h | | | Write Buffer | E8h | | | Flush Cache Ext | EAh | | | Identify Device | ECh | | | Set Features | EFh | | | Security Set Password | F1h | | | Security Unlock | F2h | | | Security Erase Prepare | F3h | | | Security Erase Unit | F4h | | | Security Freeze Lock | F5h | | | Security Disable Password | F6h | | | Read Native Max Address | F8h | | | Set Max Address | F9h | | | Set Max Set Password | | 01h | | Set Max Lock | | 02h | | Set Max Unlock | | 03h | | Set Max Freeze Lock | | 04h | # 11 SMART Attributes Table 11-1: Required S.M.A.R.T Attributes | ID | Item | |-----|--------------------------| | 01h | Read Error Rate | | 05h | Physical Bad Block Count | | 09h | Power On Hours | | 0Ch | Power On Count | | ID | Item | |-----|--| | C0h | Sudden Power Off Count | | C2h | Temperature | | C4h | Reallocation Event Count | | C7h | UltraDMA CRC Error Count | | E7h | Life Left Percent | | E9h | Media Wearout Indicator | | F1h | F1h Host Total LBAs Written (each write unit = 32MB) | | F2h | F2h Host Total LBAs Read (each read unit = 32MB) | Table 11-2: S.M.A.R.T Attributes Not Supported | ID | Item | |-----|-------------------------| | E7h | Life Left Percent | | E9h | Media Wearout Indicator | **Table 11-3: Optional Supported S.M.A.R.T Attributes** | ID | Item | Threshold | |----|--|-----------| | 01 | Read Error Rate | 0 | | 05 | Physical Bad Block Count when run-time | 0 | | 09 | Power-On Hours | 0 | | 0C | Power-On Count | 0 | | A0 | Uncorrectable UNC Sector Count When Read/Write | 0 | | A1 | Number of Pure Spare Block | 0 | | A3 | Number of Initial Invalid Block | 0 | | A4 | Total Erase Count TLC | 0 | | A5 | Maximum Erase Count TLC | 0 | | A6 | Minimum Erase Count TLC | 0 | | A7 | Average Erase Count TLC | 0 | | 94 | Total Erase Count SLC | 0 | | 95 | Maximum Erase Count SLC | 0 | | 96 | Minimum Erase Count SLC | 0 | | 97 | Average Erase Count SLC | 0 | | A9 | Remain Life Percentage | 0 | | B1 | Total wearlevel count | 50 | | B5 | Total program fail count | 0 | | B6 | Total Erase fail count | 0 | | ID | Item | Threshold | |----|--|-----------| | C0 | Sudden Power-off Count | 0 | | C2 | Temperature | 0 | | C4 | Uncorrectable Error Count | 16 | | C7 | UltraDMA CRC Error Count | 50 | | E8 | Remain free Space(%) | 0 | | | Host Total LBAs Written (each write unit = | | | F1 | 32MB) | 0 | | F2 | Host Total LBAs Read (each read unit = 32MB) | 0 | | | Flash Total Units Written TLC (each write unit = | | | F5 | 32MB) | 0 | # 12 Compliance Viking Technology SSDs comply with the following: - RoHS "green" - CE (Europe): EN55022, 2006 Class B and EN55024, 1998 + A1: 2001 + A2:2003 - FCC: CFR Title 47, Part 15, ICES-003, all Class B - BSMI (Taiwan): approval to CNS 13438 (testing in progress) - C-TICK (Australia, New Zealand): approval to AS/NZS CISPR22 (testing in progress) - TUV (Germany): approval to IEC60950/EN60950 (testing in progress) - VCCI (testing in progress).